My Favorite Optimization Modeling
TricksMethods

Rob Pratt
NC State University Operations Research Seminar
November 13, 2023

Gsas

FricksMethods

An idea which can be used only once
is a trick. If one can use it more than
once it becomes a method.

— Gem{}e Ps»!t{a, —

AZ QUOTES

Capyright I SAS Institute Inc. ANl Fights reserved

@ Binary Variables

@ Lincarization

@ Decomposition

@ Network Reformulation
@ sparsification

@ Sstrengthening Constraints

@ MILP Local Search

Outline

Capyright © SAS Institute Inc. ANl rights reserve

]

Binary Variables

Binary variable = € {0, 1} useful for modeling yes-no decisions

Constraint Type Algebra
Conflict r+y<l1
Implication x <y
Partitioning (choose exactly one) Do as =1
jed
Covering (choose at least one) Yoxp>1
jeJ
Packing/Clique/SOS1 (choose at most one) Yox; <1
jed
Cardinality (choose exactly k) Yxj=k
jeJ
Knapsack/Capacity Yoajxz;<b
jed

Capyright © SAS Institute Ine. All rights reserved

Linearization

Product of binary variables [] z;
jeJ
® Replace product with binary variable z and impose linear constraints
® z<gjforjeJ
® 2>3 sz —|J+1
Product of binary variables and bounded variable
MIN, MAX, absolute value
Ratio of linear constraints
solve linearize; attempts linearization
expand / linearize; expands linearized model

save mps|gps linearize; saves linearized model to MPS or QPS format

Capyright © SAS Institute Ine. All rights reserved

z;; € {0,1}

Yigi'j' = Tij = Tyt 5!

Usual Linearization

Tij € {0, 1}
A Yijirj! = Tij + Tarje — 1
Yijiry < Tij
Yijiy) < Titjr

Yijiryr = 0

Capyright © SAS Institute Ine. All rights reserved

Compact Linearization

inj =1 foralls: inj =1 foralls:
J J
zi; € {0,1} zij € {0,1}

yij’i/j’ = {E,L] ° xi’j/ e E yZJ’L/]’ = {L‘i/j/
J

0 < yijiry < Tij

Capyright © SAS Institute Ine. All rights reserved

Indicator Constraints

Logical implicationy =1 = 3 aja; <b

con C: y = 1 implies sum {j in JSET} al[j]
Linearized via big-M constraint } . a;z; — b < M(1 —y)
Also supports >, =, and range constraints

Consequent need not be linear but must be linearizable

Capyright © SAS Institute Ine. All rights reserved

*x[]]

Indicator Constraints Generalized

Want to enforce Zj ajr; <b = Zj ©iny = @)
Split into two implications
° Zjajxjgb — y=1
* y=1 — ZjCj,Tde
Use contrapositive of the first (P — (@ is equivalent to Q) — —P)

® con Cl: y = 0 implies sum {j in JSET} al[jl*x[j] >= b + eps;
® con C2: y =1 implies sum {j in JSET} c[jl*x[]j] <= d;

or.stackexchange.com/questions/10172

Capyright © SAS Institute Inc. ANl rights reserved

or.stackexchange.com/questions/10172

Semicontinuous Variables

Given constants 0 < ¢ < u

Want to enforce z € {0} U [¢, u]

Equivalently, z =0V z € [(,u]

Introduce binary variable y and use indicator constraints

® con Cl: y = 0 implies x = 0;
® con C2: y =1 implies 1 <= x <= u;

Linearized via big-M constraints /y < = < uy

Capyright © SAS Institute Ine. All rights reserved

Disjoint Intervals

® Want to enforce x € [0,2] U [4,6] U [8,9]
® Introduce binary variables ¥, ¥2, y3 and use indicator constraints

1 var x >= 0 <= 9;
2 var y {1..3} binary;
3 con Partition: y[l] + yl[2] +

4 con Cl: y[l] = 1 implies 0 <
5 con C2: y[2] = 1 implies 4 <
6 con C3: y[3] =1 implies 8 <

y[3
= X

= 1;

]

=
=
=

2;
6;
9;

x
x

® |inearization via big-M constraints yields

® Stronger linearization

z—2<(9-2)1—w1)
4—2<(4-0)(1-12)
z—06<(9-6)(1-1y)
8-z <(8-0)(1-ys)

Oy1 + 4y2 + 8yz < x < 2y; + 6y2 + 9y3

Capyright © SAS Institute Ine. All rights reserved

Conjunctive Normal Form (CNF)

/\\/Z,‘j <~ Zzijzlforalliel

el jed; Jj€J;

e R.Raman and I.E. Grossmann, “Relation Between MILP Modelling and Logical
Inference for Chemical Process Synthesis,” Computers Chem. Engng. 15 (1991), 73-84
® Three steps to convert proposition to CNF:
@ Change P — Qto-PVQ
® Push negation inward by De Morgan’s laws
@ Distribute \VV over A

Capyright © SAS Institute Ine. All rights reserved

DEIES

Conflict Implication
—(z Ay) T = y
-z V -y —zVy
(I-2)+(1-y) =1 (1-2z)+y>1
z+y<1l r <y

Many others:
or.stackexchange.com/search?g=%22conjunctive+normal+form$%22

Capyright © SAS Institute Ine. All rights reserved

or.stackexchange.com/search?q=%22conjunctive+normal+form%22

No-Good Cuts

T £ T

(A=) A(n)

Decomposition

® Completely independent problems: use COFOR or groupBy
® Loosely coupled problems: exploit block-angular structure in constraint matrix

® Dantzig-Wolfe decomposition
® Benders decomposition

Capyright © SAS Institute Ine. All rights reserved

Dantzig-Wolfe Versus Benders

Dantzig-Wolfe Decomposition

Benders Decomposition

A A, - Ag
By
By

Bix|
Complicating/linking constraints
LP master problem
MILP subproblems
Column generation
Requires further branching

A1 By
A2 By

Ajk| Bk

Complicating/linking variables
MILP master problem

LP subproblems

Row generation

Capyright © SAS Institute Ine. All rights reserved

Dantzig-Wolfe Decomposition

If complicating constraints are omitted, resulting problem is easy

LP master problem combines columns and finds optimal dual variables

MILP subproblems generate negative reduced cost columns from dual variables

Iterate between master and subproblems until optimality gap is small enough

® Requires further branching

LP master
problem

duals columns

columns

columns

MILP subproblem MILP subproblem MILP subproblem

Gsas

Capyright © SAS Institute Ine. All rights reserved

Decomposition Algorithm

Accessible in OPTMODEL, OPTLP, OPTMILP procedures

User conveys block structure via . block constraint suffix

solve with LP|MILP / decomp=(method=user) ;

Master and subproblems generated and solved automatically and in parallel

For some block-angular problems, dramatic performance improvements over
branch-and-cut algorithm

Automatically detects identical subproblems and uses Ryan-Foster branching if
applicable

Capyright © SAS Institute Ine. All rights reserved

If complicating variables are fixed, resulting problem is easy
Benders (1962): take integer variables as complicating

Benders Decomposition

MILP master problem recommends values for complicating variables

LP subproblems generate optimality and feasibility cuts from dual variables

Iterate between master and subproblems until optimality gap is small enough

fixings

LP subproblem

MILP master
problem

LP subproblem

Capyright © SAS Institute Inc. A1l rights reserver

]

cuts

LP subproblem

Gsas

Combinatorial Benders Decomposition

® Classical: MILP master, LP subproblems

® Combinatorial: MILP master, arbitrary subproblems
® [f master variables are binary...
® Benders feasibility cuts are no-good constraints that enforce = # i:

doom+ Y, (1-z)>1

j:#;=0 jidj=1

® Benders optimality cuts are big-M constraints that enforcex =& — 7

Capyright © SAS Institute Ine. All rights reserved

>

7

Implementations

Poor man'’s approach: solve MILP in each outer iteration
Better: one tree, generate Benders cut for each new integer feasible solution

Competitors

® SCIP: https://www.scipopt.org/doc/html/BENDDECF .php
® CPLEX: https://www.ibm.com/docs/en/icos/20.1.0?topic=
optimization-benders—algorithm

Plans for SAS release in early 2024

Capyright © SAS Institute Ine. All rights reserved

https://www.scipopt.org/doc/html/BENDDECF.php
https://www.ibm.com/docs/en/icos/20.1.0?topic=optimization-benders-algorithm
https://www.ibm.com/docs/en/icos/20.1.0?topic=optimization-benders-algorithm

Network Reformulation

Multiperiod problem with binary variable y,, in each period p € {1,...,n}
Node set {0, ...,n + 1}, with source s = 0 and sinkt = n + 1
For i < 7, introduce binary arc variable

1 ify;=1landy; =1buty,=0fori<p<j
G =
i 0 otherwise

Find shortest path from source to sink

Network Reformulation

Possibly multiple networks with shared resources
Integer network flow problem with few side constraints
Often solves at root node of branch-and-cut tree

Many more variables: O(n?) instead of O(n)
Difficult side constraints in initial formulation correspond to removal of arcs

® Upper limit on number of consecutive cashout hours
® Lower limit on number of hours between replenishments

Capyright © SAS Institute Ine. All rights reserved

U D WN

®

Sparsification

Sometimes better to make problem bigger but sparser
Introduce explicit variable and constraint for repeated expression

var NewVar ({ISET};
con NewCon {i in ISET}:
NewVar([i] = sum {j in JSET} ali, jl1*X[Jjl;

Least squares

min SSE = sum {i in OBS} (sum {Jj in FEATURES} x[i, j]*Beta[j] - yI[i])"2;

ar Error {OBS};

con ErrorCon {i in OBS}:
Error[i] = sum {j in FEATURES} x[i, j]l*Betalj] - yl[il;
min SSE = sum {i in OBS} Error[i]"2;

Capyright © SAS Institute Ine. All rights

Strengthening Conflict Constraints to Clique Constraints

® Binary variables ;, x;, x,
® QOriginal constraints

zi+x; <1, zm+xp<1, zj+x<1

® Replace with
T; + €y + Tk < 1

e Cuts off fractional solution z = (1/2,1/2,1/2)

1 set <num,num> ID_NODE;

2 solve with network / clique=(maxcliques=ALL) links=(include=CONFLICTS) out=(cliques=ID_NODE);
3 set CLIQUES init {};

4 set NODES_c {CLIQUES} init {};

5 for {<c,i> in ID_NODE} do;

[} CLIQUES = CLIQUES union {c};

7 NODES_c[c] = NODES_c[c] union {i};

8 end;

9 con Clique {c in CLIQUES}:

10 sum {i in NODES_c[c]} X[i] <= 1;

Capyright © SAS Institute Inc. ANl rights reserved

Strengthening in the Presence of Clique Constraints

Binary variables x;, arbitrary variables y;
Original constraints

T; + Zajyj <b for all ¢
J
St
%

Replace (1) with (3)

in—i-Zajyj <b
i J

or.stackexchange.com/questions/6187

Capyright © SAS Institute Inc. ANl rights reserved

or.stackexchange.com/questions/6187

Strengthening in the Presence of Variable Upper Bounds

Nonnegative variables z;, binary variable y

Via explicit constraints or probing, suppose y = 0 — z; = 0 for all ¢
® 1; < M,y forall i
® > aixy <by

Original constraints

Zcixigd
7

Replace (5) with (6)

Z cr; < dy
i

Capyright © SAS Institute Inc. ANl rights reserved

MILP Local Search

Very Large Neighborhood Search, Ruin and Recreate, Solution Polishing
Improvement heuristic

Fix subset of variables and solve resulting MILP, much easier than original MILP
Current solution always integer feasible, so use PRIMALIN

Repeat as many times as you like, fixing random(?) subset of variables

Terminate each MILP early to avoid spending too much time on any one subinstance

Capyright © SAS Institute Ine. All rights reserved

Additional Links

Compact Linearization

® ATM Cash Management example in DECOMP documentation
Benders Decomposition

® Linear Optimization in SAS/OR Software: Migrating to the OPTMODEL Procedure
Network Reformulation

® The Traveling Baseball Fan Problem

® Monitor Assignment for Students with Disabilities Using SAS Optimization
Strengthening Constraints

® Using SAS/OR to Optimize the Layout of Wind Farm Turbines

® Why Venue Optimization is Critical and How It Works

® Machine Learning for Combinatorial Optimization competition 2021: video, paper

Capyright © SAS Institute Ine. All rights reserved

https://go.documentation.sas.com/doc/en/pgmsascdc/v_044/casmopt/casmopt_decomp_examples13.htm
https://support.sas.com/resources/papers/proceedings11/200-2011.pdf
https://blogs.sas.com/content/operations/2015/04/03/the-traveling-baseball-fan-problem/
https://www.youtube.com/watch?v=Cta6i6OC2zE
https://support.sas.com/resources/papers/proceedings15/SAS1681-2015.pdf
https://blogs.sas.com/content/operations/2020/11/09/venue-optimization/
https://www.youtube.com/watch?v=CAiLAITiv34
https://www.ecole.ai/2021/ml4co-competition/proceedings/2.pdf

support.sas.com

Gsas

	Binary Variables
	Linearization
	Decomposition
	Network Reformulation
	Sparsification
	Strengthening Constraints
	MILP Local Search
	Additional Links

