
My Favorite Optimization Modeling
TricksMethods
Rob Pratt
NC State University Operations Research Seminar
November 13, 2023

TricksMethods

Outline

1 Binary Variables

2 Linearization

3 Decomposition

4 Network Reformulation

5 Sparsification

6 Strengthening Constraints

7 MILP Local Search

Binary Variables

Binary variable x ∈ {0, 1} useful for modeling yes-no decisions

Constraint Type Algebra
Conflict x+ y ≤ 1
Implication x ≤ y
Partitioning (choose exactly one)

∑
j∈J

xj = 1

Covering (choose at least one)
∑
j∈J

xj ≥ 1

Packing/Clique/SOS1 (choose at most one)
∑
j∈J

xj ≤ 1

Cardinality (choose exactly k)
∑
j∈J

xj = k

Knapsack/Capacity
∑
j∈J

ajxj ≤ b

Linearization

• Product of binary variables
∏
j∈J

xj

• Replace product with binary variable z and impose linear constraints
• z ≤ xj for j ∈ J
• z ≥

∑
j∈J xj − |J |+ 1

• Product of binary variables and bounded variable
• MIN, MAX, absolute value
• Ratio of linear constraints
• solve linearize; attempts linearization
• expand / linearize; expands linearized model
• save mps|qps linearize; saves linearized model to MPS or QPS format

Usual Linearization

xij ∈ {0, 1} xij ∈ {0, 1}
yiji′j′ = xij · xi′j′ ⇝ yiji′j′ ≥ xij + xi′j′ − 1

yiji′j′ ≤ xij

yiji′j′ ≤ xi′j′

yiji′j′ ≥ 0

Compact Linearization

∑
j

xij = 1 for all i
∑
j

xij = 1 for all i

xij ∈ {0, 1} xij ∈ {0, 1}

yiji′j′ = xij · xi′j′ ⇝
∑
j

yiji′j′ = xi′j′

0 ≤ yiji′j′ ≤ xij

Indicator Constraints

• Logical implication y = 1 =⇒
∑

j ajxj ≤ b

• con C: y = 1 implies sum {j in JSET} a[j]*x[j] <= b;

• Linearized via big-M constraint
∑

j ajxj − b ≤ M(1− y)

• Also supports≥,=, and range constraints
• Consequent need not be linear but must be linearizable

Indicator Constraints Generalized

• Want to enforce
∑

j ajxj ≤ b =⇒
∑

j cjxj ≤ d

• Split into two implications
• ∑

j ajxj ≤ b =⇒ y = 1
• y = 1 =⇒

∑
j cjxj ≤ d

• Use contrapositive of the first (P =⇒ Q is equivalent to ¬Q =⇒ ¬P)
• con C1: y = 0 implies sum {j in JSET} a[j]*x[j] >= b + eps;
• con C2: y = 1 implies sum {j in JSET} c[j]*x[j] <= d;

• or.stackexchange.com/questions/10172

or.stackexchange.com/questions/10172

Semicontinuous Variables

• Given constants 0 < ℓ ≤ u

• Want to enforce x ∈ {0} ∪ [ℓ, u]

• Equivalently, x = 0 ∨ x ∈ [ℓ, u]

• Introduce binary variable y and use indicator constraints
• con C1: y = 0 implies x = 0;
• con C2: y = 1 implies l <= x <= u;

• Linearized via big-M constraints ℓy ≤ x ≤ uy

Disjoint Intervals
• Want to enforce x ∈ [0, 2] ∪ [4, 6] ∪ [8, 9]

• Introduce binary variables y1, y2, y3 and use indicator constraints
1 var x >= 0 <= 9;
2 var y {1..3} binary;
3 con Partition: y[1] + y[2] + y[3] = 1;
4 con C1: y[1] = 1 implies 0 <= x <= 2;
5 con C2: y[2] = 1 implies 4 <= x <= 6;
6 con C3: y[3] = 1 implies 8 <= x <= 9;

• Linearization via big-M constraints yields

x− 2 ≤ (9− 2)(1− y1)

4− x ≤ (4− 0)(1− y2)

x− 6 ≤ (9− 6)(1− y2)

8− x ≤ (8− 0)(1− y3)

• Stronger linearization

0y1 + 4y2 + 8y3 ≤ x ≤ 2y1 + 6y2 + 9y3

Conjunctive Normal Form (CNF)

∧
i∈I

∨
j∈Ji

zij ⇐⇒

∑
j∈Ji

zij ≥ 1 for all i ∈ I


• R. Raman and I.E. Grossmann, “Relation Between MILP Modelling and Logical
Inference for Chemical Process Synthesis,” Computers Chem. Engng. 15 (1991), 73–84

• Three steps to convert proposition to CNF:
1 Change P =⇒ Q to ¬P ∨Q
2 Push negation inward by De Morgan’s laws
3 Distribute ∨ over ∧

Examples

Conflict

¬(x ∧ y)

¬x ∨ ¬y
(1− x) + (1− y) ≥ 1

x+ y ≤ 1

Implication

x =⇒ y

¬x ∨ y

(1− x) + y ≥ 1

x ≤ y

Many others:
or.stackexchange.com/search?q=%22conjunctive+normal+form%22

or.stackexchange.com/search?q=%22conjunctive+normal+form%22

No-Good Cuts

x ̸= x̂

¬

 ∧
j:x̂j=1

xj

 ∧  ∧
j:x̂j=0

¬xj


¬

 ∧
j:x̂j=1

xj

∨
¬

 ∧
j:x̂j=0

¬xj


 ∨

j:x̂j=1

¬xj

∨ ∨
j:x̂j=0

xj


∑

j:x̂j=1

(1− xj) +
∑

j:x̂j=0

xj ≥ 1

Decomposition

• Completely independent problems: use COFOR or groupBy
• Loosely coupled problems: exploit block-angular structure in constraint matrix

• Dantzig-Wolfe decomposition
• Benders decomposition

Dantzig-Wolfe Versus Benders

Dantzig-Wolfe Decomposition Benders Decomposition
A1 A2 · · · A|K|
B1

B2

. . .
B|K|




A1 B1

A2 B2
... . . .

A|K| B|K|


Complicating/linking constraints Complicating/linking variables
LP master problem MILP master problem
MILP subproblems LP subproblems
Column generation Row generation
Requires further branching

Dantzig-Wolfe Decomposition
• If complicating constraints are omitted, resulting problem is easy
• LP master problem combines columns and finds optimal dual variables
• MILP subproblems generate negative reduced cost columns from dual variables
• Iterate between master and subproblems until optimality gap is small enough
• Requires further branching

LP master
problem

MILP subproblem . . . MILP subproblem . . . MILP subproblem

duals

columns

duals columns

duals

columns

Decomposition Algorithm

• Accessible in OPTMODEL, OPTLP, OPTMILP procedures
• User conveys block structure via .block constraint suffix
• solve with LP|MILP / decomp=(method=user);

• Master and subproblems generated and solved automatically and in parallel
• For some block-angular problems, dramatic performance improvements over
branch-and-cut algorithm

• Automatically detects identical subproblems and uses Ryan-Foster branching if
applicable

Benders Decomposition
• If complicating variables are fixed, resulting problem is easy
• Benders (1962): take integer variables as complicating
• MILP master problem recommends values for complicating variables
• LP subproblems generate optimality and feasibility cuts from dual variables
• Iterate between master and subproblems until optimality gap is small enough

MILP master
problem

LP subproblem . . . LP subproblem . . . LP subproblem

fixings

cuts

fixings cuts

fixings
cuts

Combinatorial Benders Decomposition

• Classical: MILP master, LP subproblems
• Combinatorial: MILP master, arbitrary subproblems
• If master variables are binary...

• Benders feasibility cuts are no-good constraints that enforce x ̸= x̂:∑
j:x̂j=0

xj +
∑

j:x̂j=1

(1− xj) ≥ 1

• Benders optimality cuts are big-M constraints that enforce x = x̂ =⇒ η ≥ η̂

Implementations

• Poor man’s approach: solve MILP in each outer iteration
• Better: one tree, generate Benders cut for each new integer feasible solution
• Competitors

• SCIP: https://www.scipopt.org/doc/html/BENDDECF.php
• CPLEX: https://www.ibm.com/docs/en/icos/20.1.0?topic=
optimization-benders-algorithm

• Plans for SAS release in early 2024

https://www.scipopt.org/doc/html/BENDDECF.php
https://www.ibm.com/docs/en/icos/20.1.0?topic=optimization-benders-algorithm
https://www.ibm.com/docs/en/icos/20.1.0?topic=optimization-benders-algorithm

Network Reformulation
• Multiperiod problem with binary variable yp in each period p ∈ {1, . . . , n}
• Node set {0, . . . , n+ 1}, with source s = 0 and sink t = n+ 1

• For i < j, introduce binary arc variable

xij =

{
1 if yi = 1 and yj = 1 but yp = 0 for i < p < j

0 otherwise

• Find shortest path from source to sink

s . . . i . . . j . . . t

cij

Network Reformulation

• Possibly multiple networks with shared resources
• Integer network flow problem with few side constraints
• Often solves at root node of branch-and-cut tree
• Many more variables: O(n2) instead ofO(n)

• Difficult side constraints in initial formulation correspond to removal of arcs
• Upper limit on number of consecutive cashout hours
• Lower limit on number of hours between replenishments

Sparsification

• Sometimes better to make problem bigger but sparser
• Introduce explicit variable and constraint for repeated expression
1 var NewVar {ISET};
2 con NewCon {i in ISET}:
3 NewVar[i] = sum {j in JSET} a[i,j]*X[j];

• Least squares
1 /* original */
2 min SSE = sum {i in OBS} (sum {j in FEATURES} x[i,j]*Beta[j] - y[i])^2;
3
4 /* reformulation */
5 var Error {OBS};
6 con ErrorCon {i in OBS}:
7 Error[i] = sum {j in FEATURES} x[i,j]*Beta[j] - y[i];
8 min SSE = sum {i in OBS} Error[i]^2;

Strengthening Conflict Constraints to Clique Constraints

• Binary variables xi, xj , xk
• Original constraints

xi + xj ≤ 1, xi + xk ≤ 1, xj + xk ≤ 1

• Replace with
xi + xj + xk ≤ 1

• Cuts off fractional solution x = (1/2, 1/2, 1/2)

1 set <num,num> ID_NODE;
2 solve with network / clique=(maxcliques=ALL) links=(include=CONFLICTS) out=(cliques=ID_NODE);
3 set CLIQUES init {};
4 set NODES_c {CLIQUES} init {};
5 for {<c,i> in ID_NODE} do;
6 CLIQUES = CLIQUES union {c};
7 NODES_c[c] = NODES_c[c] union {i};
8 end;
9 con Clique {c in CLIQUES}:
10 sum {i in NODES_c[c]} X[i] <= 1;

Strengthening in the Presence of Clique Constraints

• Binary variables xi, arbitrary variables yj
• Original constraints

xi +
∑
j

ajyj ≤ b for all i (1)

∑
i

xi ≤ 1 (2)

• Replace (1) with (3) ∑
i

xi +
∑
j

ajyj ≤ b (3)

• or.stackexchange.com/questions/6187

or.stackexchange.com/questions/6187

Strengthening in the Presence of Variable Upper Bounds

• Nonnegative variables xi, binary variable y
• Via explicit constraints or probing, suppose y = 0 =⇒ xi = 0 for all i

• xi ≤ Miy for all i
• ∑

i aixi ≤ by

• Original constraints

y = 0 =⇒ xi = 0 for all i (4)∑
i

cixi ≤ d (5)

• Replace (5) with (6) ∑
i

cixi ≤ dy (6)

MILP Local Search

• Very Large Neighborhood Search, Ruin and Recreate, Solution Polishing
• Improvement heuristic
• Fix subset of variables and solve resulting MILP, much easier than original MILP
• Current solution always integer feasible, so use PRIMALIN
• Repeat as many times as you like, fixing random(?) subset of variables
• Terminate each MILP early to avoid spending too much time on any one subinstance

Additional Links

• Compact Linearization
• ATM Cash Management example in DECOMP documentation

• Benders Decomposition
• Linear Optimization in SAS/OR Software: Migrating to the OPTMODEL Procedure

• Network Reformulation
• The Traveling Baseball Fan Problem
• Monitor Assignment for Students with Disabilities Using SAS Optimization

• Strengthening Constraints
• Using SAS/OR to Optimize the Layout of Wind Farm Turbines
• Why Venue Optimization is Critical and How It Works
• Machine Learning for Combinatorial Optimization competition 2021: video, paper

https://go.documentation.sas.com/doc/en/pgmsascdc/v_044/casmopt/casmopt_decomp_examples13.htm
https://support.sas.com/resources/papers/proceedings11/200-2011.pdf
https://blogs.sas.com/content/operations/2015/04/03/the-traveling-baseball-fan-problem/
https://www.youtube.com/watch?v=Cta6i6OC2zE
https://support.sas.com/resources/papers/proceedings15/SAS1681-2015.pdf
https://blogs.sas.com/content/operations/2020/11/09/venue-optimization/
https://www.youtube.com/watch?v=CAiLAITiv34
https://www.ecole.ai/2021/ml4co-competition/proceedings/2.pdf

support.sas.com

	Binary Variables
	Linearization
	Decomposition
	Network Reformulation
	Sparsification
	Strengthening Constraints
	MILP Local Search
	Additional Links

