My Favorite Optimization Modeling TricksMethods

Rob Pratt
NC State University Operations Research Seminar
November 13, 2023

Outline

(1) Binary Variables
2. Linearization
(3) Decomposition
(4) Network Reformulation
(5) Sparsification
(6) Strengthening Constraints
(7) MILP Local Search

Binary Variables

Binary variable $x \in\{0,1\}$ useful for modeling yes-no decisions

Constraint Type	Algebra
Conflict	$x+y \leq 1$
Implication	$x \leq y$
Partitioning (choose exactly one)	$\sum_{j \in J} x_{j}=1$
Covering (choose at least one)	$\sum_{j \in J} x_{j} \geq 1$
Packing/Clique/SOS1 (choose at most one)	$\sum_{j \in J} x_{j} \leq 1$
Cardinality (choose exactly k)	$\sum_{j \in J} x_{j}=k$
Knapsack/Capacity	$\sum_{j \in J} a_{j} x_{j} \leq b$

Linearization

- Product of binary variables $\prod_{j \in J} x_{j}$
- Replace product with binary variable z and impose linear constraints
- $z \leq x_{j}$ for $j \in J$
- $z \geq \sum_{j \in J} x_{j}-|J|+1$
- Product of binary variables and bounded variable
- MIN, MAX, absolute value
- Ratio of linear constraints
- solve linearize; attempts linearization
- expand / linearize; expands linearized model
- save mps|qps linearize; saves linearized model to MPS or QPS format

Usual Linearization

$$
\begin{aligned}
& x_{i j} \in\{0,1\} \\
& y_{i j i^{\prime} j^{\prime}}=x_{i j} \cdot x_{i^{\prime} j^{\prime}} \rightsquigarrow \\
& x_{i j} \in\{0,1\} \\
& y_{i j i^{\prime} j^{\prime}} \geq x_{i j}+x_{i^{\prime} j^{\prime}}-1 \\
& y_{i j i^{\prime} j^{\prime}} \leq x_{i j} \\
& y_{i j i^{\prime} j^{\prime}} \leq x_{i^{\prime} j^{\prime}} \\
& y_{i j i^{\prime} j^{\prime}} \geq 0
\end{aligned}
$$

Compact Linearization

$$
\begin{array}{rlrl}
\sum_{j} x_{i j} & =1 \text { for all } i & & \sum_{j} x_{i j}=1 \text { for all } i \\
x_{i j} \in\{0,1\} & \leadsto & x_{i j} \in\{0,1\} \\
y_{i j i^{\prime} j^{\prime}} & =x_{i j} \cdot x_{i^{\prime} j^{\prime}} & & \sum_{j} y_{i j i^{\prime} j^{\prime}}=x_{i^{\prime} j^{\prime}} \\
& & 0 \leq y_{i j i^{\prime} j^{\prime}} \leq x_{i j}
\end{array}
$$

Indicator Constraints

- Logical implication $y=1 \Longrightarrow \sum_{j} a_{j} x_{j} \leq b$
- con C: y = 1 implies sum \{j in JSET\} $a[j] * x[j]<=b ;$
- Linearized via big-M constraint $\sum_{j} a_{j} x_{j}-b \leq M(1-y)$
- Also supports \geq, =, and range constraints
- Consequent need not be linear but must be linearizable

Indicator Constraints Generalized

- Want to enforce $\sum_{j} a_{j} x_{j} \leq b \Longrightarrow \sum_{j} c_{j} x_{j} \leq d$
- Split into two implications
- $\sum_{j} a_{j} x_{j} \leq b \Longrightarrow y=1$
- $y=1 \Longrightarrow \sum_{j} c_{j} x_{j} \leq d$
- Use contrapositive of the first ($P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$)
- con C1: y = O implies sum \{j in JSET\} a[j]*x[j] >= b + eps;
- con C2: y = 1 implies sum $\{j$ in JSET\} $c[j] * x[j]<=d$;
- or.stackexchange.com/questions/10172

Semicontinuous Variables

- Given constants $0<\ell \leq u$
- Want to enforce $x \in\{0\} \cup[\ell, u]$
- Equivalently, $x=0 \vee x \in[\ell, u]$
- Introduce binary variable y and use indicator constraints
- con C1: $y=0$ implies $x=0$;
- con C2: $y=1$ implies $l<=x<=u$;
- Linearized via big-M constraints $\ell y \leq x \leq u y$

Disjoint Intervals

- Want to enforce $x \in[0,2] \cup[4,6] \cup[8,9]$
- Introduce binary variables y_{1}, y_{2}, y_{3} and use indicator constraints

```
1 var x >= 0<= 9;
2 var y {1..3} binary;
3 con Partition: y[1] + y[2] + y[3] = 1;
4 con C1: y[1] = 1 implies 0 <= x <= 2;
5 con C2: y[2] = 1 implies 4<= x <= 6;
6 con C3: y[3] = 1 implies 8 <= x <= 9;
```

- Linearization via big-M constraints yields

$$
\begin{aligned}
& x-2 \leq(9-2)\left(1-y_{1}\right) \\
& 4-x \leq(4-0)\left(1-y_{2}\right) \\
& x-6 \leq(9-6)\left(1-y_{2}\right) \\
& 8-x \leq(8-0)\left(1-y_{3}\right)
\end{aligned}
$$

- Stronger linearization

$$
0 y_{1}+4 y_{2}+8 y_{3} \leq x \leq 2 y_{1}+6 y_{2}+9 y_{3}
$$

Conjunctive Normal Form (CNF)

$$
\bigwedge_{i \in I} \bigvee_{j \in J_{i}} z_{i j} \Longleftrightarrow\left(\sum_{j \in J_{i}} z_{i j} \geq 1 \text { for all } i \in I\right)
$$

- R. Raman and I.E. Grossmann, "Relation Between MILP Modelling and Logical Inference for Chemical Process Synthesis," Computers Chem. Engng. 15 (1991), 73-84
- Three steps to convert proposition to CNF:
(1) Change $P \Longrightarrow Q$ to $\neg P \vee Q$
(2) Push negation inward by De Morgan's laws
(3) Distribute \vee over \wedge

Examples

Conflict

$\neg(x \wedge y)$
$\neg x \vee \neg y$
$(1-x)+(1-y) \geq 1$
$x+y \leq 1$

Implication

$$
\begin{gathered}
x \Longrightarrow y \\
\neg x \vee y \\
(1-x)+y \geq 1 \\
x \leq y
\end{gathered}
$$

Many others:
or.stackexchange.com/search?q=\"conjunctive+normal+form\"

No-Good Cuts

$$
\begin{aligned}
& x \neq \hat{x} \\
& \neg\left[\left(\bigwedge_{j: \hat{x}_{j}=1} x_{j}\right) \bigwedge\left(\bigwedge_{j: \hat{x}_{j}=0} \neg x_{j}\right)\right] \\
& \neg\left(\bigwedge_{j: \hat{x}_{j}=1} x_{j}\right) \bigvee \neg\left(\bigwedge_{j: \hat{x}_{j}=0} \neg x_{j}\right) \\
& \left(\bigvee_{j: \hat{x}_{j}=1} \neg x_{j}\right) \bigvee\left(\bigvee_{j: \hat{x}_{j}=0} x_{j}\right) \\
& \sum_{j: \hat{x}_{j}=1}\left(1-x_{j}\right)+\sum_{j: \hat{x}_{j}=0} x_{j} \geq 1
\end{aligned}
$$

Decomposition

- Completely independent problems: use COFOR or groupBy
- Loosely coupled problems: exploit block-angular structure in constraint matrix
- Dantzig-Wolfe decomposition
- Benders decomposition

Dantzig-Wolfe Versus Benders

Dantzig-Wolfe Decomposition	Benders Decomposition
$\left(\begin{array}{cccc}A_{1} & A_{2} & \cdots & A_{\|K\|} \\ B_{1} & & & \\ & B_{2} & & \\ & & \ddots & \\ & & & B_{\|K\|}\end{array}\right)$	$\left(\begin{array}{ccccc}A_{1} & B_{1} & & & \\ A_{2} & & B_{2} & & \\ \vdots & & & \ddots & \\ A_{\|K\|} & & & & B_{\|K\|}\end{array}\right)$
Complicating/linking constraints	Complicating/linking variables
LP master problem	MILP master problem
MILP subproblems	LP subproblems
Column generation	Row generation
Requires further branching	

Dantzig-Wolfe Decomposition

- If complicating constraints are omitted, resulting problem is easy
- LP master problem combines columns and finds optimal dual variables
- MILP subproblems generate negative reduced cost columns from dual variables
- Iterate between master and subproblems until optimality gap is small enough
- Requires further branching

Decomposition Algorithm

- Accessible in OPTMODEL, OPTLP, OPTMILP procedures
- User conveys block structure via .block constraint suffix
- solve with LP|MILP / decomp=(method=user);
- Master and subproblems generated and solved automatically and in parallel
- For some block-angular problems, dramatic performance improvements over branch-and-cut algorithm
- Automatically detects identical subproblems and uses Ryan-Foster branching if applicable

Benders Decomposition

- If complicating variables are fixed, resulting problem is easy
- Benders (1962): take integer variables as complicating
- MILP master problem recommends values for complicating variables
- LP subproblems generate optimality and feasibility cuts from dual variables
- Iterate between master and subproblems until optimality gap is small enough

Combinatorial Benders Decomposition

- Classical: MILP master, LP subproblems
- Combinatorial: MILP master, arbitrary subproblems
- If master variables are binary...
- Benders feasibility cuts are no-good constraints that enforce $x \neq \hat{x}$:

$$
\sum_{j: \hat{x}_{j}=0} x_{j}+\sum_{j: \hat{x}_{j}=1}\left(1-x_{j}\right) \geq 1
$$

- Benders optimality cuts are big-M constraints that enforce $x=\hat{x} \Longrightarrow \eta \geq \hat{\eta}$

Implementations

- Poor man's approach: solve MILP in each outer iteration
- Better: one tree, generate Benders cut for each new integer feasible solution
- Competitors
- SCIP: https://www.scipopt.org/doc/html/BENDDECF.php
- CPLEX: https://www.ibm.com/docs/en/icos/20.1.0?topic= optimization-benders-algorithm
- Plans for SAS release in early 2024

Network Reformulation

- Multiperiod problem with binary variable y_{p} in each period $p \in\{1, \ldots, n\}$
- Node set $\{0, \ldots, n+1\}$, with source $s=0$ and $\operatorname{sink} t=n+1$
- For $i<j$, introduce binary arc variable

$$
x_{i j}= \begin{cases}1 & \text { if } y_{i}=1 \text { and } y_{j}=1 \text { but } y_{p}=0 \text { for } i<p<j \\ 0 & \text { otherwise }\end{cases}
$$

- Find shortest path from source to sink

Network Reformulation

- Possibly multiple networks with shared resources
- Integer network flow problem with few side constraints
- Often solves at root node of branch-and-cut tree
- Many more variables: $O\left(n^{2}\right)$ instead of $O(n)$
- Difficult side constraints in initial formulation correspond to removal of arcs
- Upper limit on number of consecutive cashout hours
- Lower limit on number of hours between replenishments

Sparsification

- Sometimes better to make problem bigger but sparser
- Introduce explicit variable and constraint for repeated expression

```
var NewVar {ISET};
con NewCon {i in ISET}:
    NewVar[i] = sum {j in JSET} a[i,j]*X[j];
```

- Least squares

```
/* original *
min SSE = sum {i in OBS} (sum {j in FEATURES} x[i,j]*Beta[j] - y[i])^2;
/* reformulation */
var Error {OBS};
con ErrorCon {i in OBS}:
    Error[i] = sum {j in FEATURES} x[i,j]*Beta[j] - y[i];
min SSE = sum {i in OBS} Error[i]^2;
```


Strengthening Conflict Constraints to Clique Constraints

- Binary variables x_{i}, x_{j}, x_{k}
- Original constraints

$$
x_{i}+x_{j} \leq 1, \quad x_{i}+x_{k} \leq 1, \quad x_{j}+x_{k} \leq 1
$$

- Replace with

$$
x_{i}+x_{j}+x_{k} \leq 1
$$

- Cuts off fractional solution $x=(1 / 2,1 / 2,1 / 2)$

```
set <num,num> ID_NODE;
solve with network / clique=(maxcliques=ALL) links=(include=CONFLICTS) out=(cliques=ID_NODE);
set CLIQUES init {};
set NODES_c {CLIQUES} init {};
for {<c,i> in ID_NODE} do;
    CLIQUES = CLIQUES union {c};
    NODES_c[c] = NODES_c[c] union {i};
end;
con Clique {c in CLIQUES}:
    sum {i in NODES_c[c]} X[i] <= 1;
```


Strengthening in the Presence of Clique Constraints

- Binary variables x_{i}, arbitrary variables y_{j}
- Original constraints

$$
\begin{align*}
x_{i}+\sum_{j} a_{j} y_{j} \leq b & \text { for all } i \\
\sum_{i} x_{i} \leq 1 & \tag{2}
\end{align*}
$$

- Replace (1) with (3)

$$
\begin{equation*}
\sum_{i} x_{i}+\sum_{j} a_{j} y_{j} \leq b \tag{3}
\end{equation*}
$$

- or.stackexchange.com/questions/6187

Strengthening in the Presence of Variable Upper Bounds

- Nonnegative variables x_{i}, binary variable y
- Via explicit constraints or probing, suppose $y=0 \Longrightarrow x_{i}=0$ for all i
- $x_{i} \leq M_{i} y$ for all i
- $\sum_{i} a_{i} x_{i} \leq b y$
- Original constraints

$$
\begin{align*}
y=0 & \Longrightarrow x_{i}=0 \quad \text { for all } i \tag{4}\\
\sum_{i} c_{i} x_{i} \leq d & \tag{5}
\end{align*}
$$

- Replace (5) with (6)

$$
\begin{equation*}
\sum_{i} c_{i} x_{i} \leq d y \tag{6}
\end{equation*}
$$

MILP Local Search

- Very Large Neighborhood Search, Ruin and Recreate, Solution Polishing
- Improvement heuristic
- Fix subset of variables and solve resulting MILP, much easier than original MILP
- Current solution always integer feasible, so use PRIMALIN
- Repeat as many times as you like, fixing random(?) subset of variables
- Terminate each MILP early to avoid spending too much time on any one subinstance

Additional Links

- Compact Linearization
- ATM Cash Management example in DECOMP documentation
- Benders Decomposition
- Linear Optimization in SAS/OR Software: Migrating to the OPTMODEL Procedure
- Network Reformulation
- The Traveling Baseball Fan Problem
- Monitor Assignment for Students with Disabilities Using SAS Optimization
- Strengthening Constraints
- Using SAS/OR to Optimize the Layout of Wind Farm Turbines
- Why Venue Optimization is Critical and How It Works
- Machine Learning for Combinatorial Optimization competition 2021: video, paper

support.sas.com

